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Two-parameter scaling of correlation functions near continuous phase transitions
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We discuss the order parameter correlation function in the vicinity of continuous phase transitions using a
two-parameter scaling form G(k)=k;2g(k§,k/ k.), where k is the wave vector and ¢ is the correlation length,
and the interaction-dependent nonuniversal momentum scale k. remains finite at the critical fixed point. The
correlation function describes the entire critical regime and captures the classical to critical crossover. One-
parameter scaling is recovered only in the limit k/k,— 0. We present an approximate calculation of g(x,y) for
the Ising universality class using the functional renormalization group.
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Correlation functions in the vicinity of continuous phase
transitions usually assume a scaling form at long wave-
lengths [1,2]. Asymptotically, for wave vectors k much
smaller than the relevant microscopic scale A (such as the
inverse lattice spacing), the order parameter correlation func-
tion G(k) can be written as G(k)=k"*"g*(k&), where the
anomalous dimension # characterizes the universality class
of the system, £ is the order parameter correlation length, and
the scaling functions g*(x) and g~(x) describe the regime
above and below the critical temperature 7, respectively.
Precisely at the temperature 7=T,. there should be a unique
scaling function, so that g*()=g~(°). If the dimensionality
D of the system is smaller than its upper critical dimension,
then g*(x) approach finite limits for large Ayé and we may
take the limit Aj—o. According to the single-parameter
scaling hypothesis, the functions g*(x) are essentially deter-
mined by their asymptotic limits for small and large x, so
that an extrapolation to the crossover regime x = 1 is possible
either from the region x> 1, or from x<<1. However, it is
clear that another prominent scale, which is deducible al-
ready from a dimensional analysis of Ginzburg-Landau-type
theories but is absent from the one-parameter-scaling picture,
will be important at larger wave vectors: the interaction-
dependent scale k., which measures the size of the Ginzburg
critical region [3]. Here we shall assume a microscopic
model such that the scale &, is small compared to the natural
cutoff of the model. This happens, e.g., for Ising models if
the range of interactions is made very large [6] or near the
critical point of complex fluids [7]. In these systems a
classical-to-critical crossover can be observed from a region
dominated by the Gaussian fixed point to the region gov-
erned by the Wilson-Fisher fixed point. While the crossover
of static thermodynamic derivates has been well studied in
the past [4—7], the crossover behavior of the order parameter
correlation function has only been investigated within a one-
parameter theory valid exactly at T, [8-10].

In this work we extend the one-parameter scaling theory
for correlation functions to account also for the interaction-
dependent scale k.<<A,, which divides the critical regime
&l<k< A, into two separate regimes where G(k) has rather
different properties [8-10]: only in the critical long-
wavelength (CL) regime ¢ '<k<k,<A, does the correla-
tion function scale asymptotically with an anomalous dimen-
sion 7. For k.£>1 there exists another critical short-
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wavelength (CS) regime &'!<k.<k<A, where the
behavior of G(k) is still universal but distinct from the
anomalous scaling in the CL regime. The scale k.. is present
in the usual renormalization group (RG) analysis [4], but is
lost if the RG flow is linearized in the vicinity of the critical
fixed point.

Taking into account the macroscopically ordered and dis-
ordered regimes, four different macroscopic domains of
wave vectors should be distinguished, as summarized in Fig.
1. In order to bring out the difference between the CL and
CS regimes, we express G(k) in terms of the irreducible
self-energy 3(k)=G~'(k)—k*. In the CL regime (k) scales
asymptotically as k=7, which dominates the bare k> disper-
sion, so that G(k)=[3(k)]~'. On the other hand, in the CS
regime (k) may or may not be larger than &, depending on
the strength of the interaction. What is more important here
is that for k. <<k << A, the self-energy can still be expressed in
terms of a universal scaling function that shows power law
behavior different from the CL regime. Therefore, the self-
energy in the macroscopic domain k<< A, should be written
in terms of scaling functions o*(x,y) depending on two pa-
rameters x=k¢ and y=k/k,,
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FIG. 1. (Color online) Macroscopic domain of wave vector
k<A, and correlation length &'<A,. In the four shaded regions
the correlation function G(k) has different behavior. The critical
regime & !<<k<<A, is subdivided into a critical long-wavelength
(CL) regime &'<k<k, (where the usual one-parameter scaling
with anomalous dimension 7 is valid) and a critical short-
wavelength (CS) regime & ! <k.<k (where the self-energy exhibits
universal power-law scaling distinct from the CL regime). This fig-
ure is a refinement of the corresponding Fig. 1 of Ref. [11].

©2007 The American Physical Society

RAPID COMMUNICATIONS


http://dx.doi.org/10.1103/PhysRevE.76.040101

HASSELMANN, SINNER, AND KOPIETZ

In (Ac5 (/) "

kE<<1 k E>>1

0
In(x) = In (k&)

FIG. 2. (Color online) Lowest-order perturbative results for the
scaling functions Acj(x) (solid line) and Aog(x) (dashed line) in
D=3; see Egs. (3) and (4). The function Aoy (Aoyp) is determined
by the upper (lower) diagram on the left.

S(k) = k2o (ké kik,), (1)

where o*(x,y) corresponds to the disordered phase T>T,,
while o7 (x,y) describes the ordered phase T<T,. If the
system is cooled through 7. and one probes the system at a
fixed scale k, then the asymptotic critical behavior with
anomalous exponent 7 can only be observed in the CL re-
gime £'<k<k,. Yet the same experiment at k, <k would
reveal the universal behavior of the self-energy in the CS
regime. The nonuniversal scale k., defining the width of the
CL regime, is missed within the field-theoretical renormal-
ization group, which effectively sets k.= in the self-energy.
However, k, and the scaling functions o*(x,y) can be calcu-
lated using the functional renormalization group [9,12-15].

We believe that the statements above are general and ap-
ply to any continuous phase transition. In the rest of this
work we shall demonstrate their validity by an approximate
calculation of the scaling functions ¢™(x,y) for the Ising uni-
versality class in D dimensions, which can be modeled by an
action involving a real field ¢(r),

_ Dlvzﬁz Ung 4
Slel= dr2(¢)+ e+, (2)

where an ultraviolet (uv) cutoff A is assumed to regularize
the theory. It is instructive to consider first the perturbative
calculation of the self-energy, which is possible as long as
the relevant dimensionless coupling constant #y=u A0§4‘D is
small. The correlation length & can be expressed in terms of
the self-energy as &2=273(0), where the field renormaliza-
tion factor Z is defined as Z'= 1+d2(k)/dk?|;_o. For
D<4—i.e., below the upper critical dimension of our
model—the loop integrals generated in the perturbative ex-
pansion are uv convergent and we may take the limit
Ay—oe. Perturbation theory yields the self-energy in scaling
form &3.(k)=Z"'+Aoy(k§). The lowest-order diagrams giv-
ing rise to a momentum dependence of the self-energy are
shown in Fig. 2. In the disordered phase the corresponding
scaling function is [up to order 0(17(3))]

i 1 1

7
Agp(x)=—" - :
7o) 6 p’+1 (p+xn)+1

p

x(p)[ (3)

where n is an arbitrary unit vector, [,=/ (2%77%’ and x(p)
=[,Alp"*+1][(p'+p)*+11}"". For T<T, there is a finite
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three-legged vertex of order 17(1)/ 2, so that the leading momen-
tum dependent contribution to the scaling function Ao} (x) is
given by the lower diagram in Fig. 2 which is linear in i,

Ay ()= SO - x0T+ 0@). @

An explicit evaluation of Acofj(x) in D=3 is shown in Fig. 2.
The qualitative behavior of the functions o*(x) is easily ob-
tained for arbitrary D. While Aog(x)xx? for x—0, the as-
ymptote for large x is nontrivial due to the nonanalytic be-
havior of the function y(g)%¢”* for large ¢ in D<<4. We
find Aa'g(x)Osz(D_3) for 3<D<4, Acj(x)*Inx for D=3,
and Aoj(x) ~Acy(©)=0(1) for 2<D<3. In the ordered
phase, the scaling function Aoj(x) approaches for large x a
finite limit Aog ()= %ﬁo)((O) but the subleading correction is
nonanalytic, Agy(x)—Adj () cxP~*,

Lowest-order perturbation theory does not directly reveal
the existence of a second characteristic length scale k' be-
sides & However, the perturbative approach breaks down in
the vicinity of the critical point for D <4 since the effective
dimensionless expansion parameter iy=u A0§4‘D diverges. A
consistent resummation of these divergences using a RG ap-
proach not only leads to nontrivial renormalization of &, but
also reveals the presence of the characteristic scale k. [9].
The signature of both scales k, and £ ! is already visible in
the usual one-loop RG equations for the rescaled coupling
parameters r,=Z;ry/A> and u;=KpZ} AP~*u,, describing the
evolution of r, and u, in Eq. (2) as the degrees of freedom
in the momentum shell A=Ay e/ <k<A, are integrated out
[1,2]. Here, Z; is a field renormalization factor and
Kp=2""P7P2/T(D/2). For T>T., the one-loop RG equa-
tions are [1]

(91r1=2r,+ul/[2(1+r1)], (5)

Oty = (4 = D)u; = 3ur/[2(1 + r)?]. (6)

If we fine-tune the initial value r, such that the system is
close to the critical point, the typical RG flow of r; and u; as
a function of the “RG time” [ is shown in Fig. 3. The two
characteristic RG times /. and /. clearly separate three dis-
tinct regimes. In the regime 0<</=</_, the coupling param-
eters r; and u; flow toward the values r. and u. associated
with the critical fixed point; in the intermediate interval
l.=I=I. the RG flow is close to the fixed point and very
slow while for /. =/ the trajectory rapidly flows away from
the fixed point. A simple calculation [9] yields the estimate
.~ (4=D)~" In(u+/uy) for uy<u.. The one-parameter scal-
ing hypothesis is based on the analysis of the linearized RG
flow in the vicinity of the fixed point and correlates with the
existence of only one unstable direction. The eigenvalue cor-
responding to the unstable direction then directly determines
the scaling of &; see, e.g., Refs. [1,2]. The underlying as-
sumption is that as long as the initial parameters are close to
the critical surface (not necessarily close to the fixed point),
the unstable direction will completely dominate the flow and
thus the behavior at small k. Corrections to pure scaling are
known to arise, if the stable (i.e., irrelevant) directions of the
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FIG. 3. (Color online) Flow of the coupling parameters r; and u;
for a nearly critical system as a function of the RG time / obtained
from Egs. (5) and (6) for D=3.

linearized flow are also accounted for [2,16]. However, the
analysis leading to one-parameter scaling is incomplete since
the flow on the critical surface itself will typically introduce
(at least) one additional scale that is not visible in the linear-
ized flow. This is how the characteristic size k. of the Gin-
zburg critical region enters and how the one-parameter scal-
ing hypothesis can be extended [4]. Below, we show that the
RG times /. and . and the associated scales k.=Age™ and
E1=Aye™" separate regimes where the momentum depen-
dent self-energy shows qualitatively different behavior.

To obtain the self-energy in the vicinity of the critical
point taking into account the full RG flow we use the func-
tional renormalization group (FRG) [9,12-15]. An exact hi-
erarchy of flow equations for the one-line irreducible vertices
of our model is obtained by differentiating the corresponding
generating functional with respect to A and then expanding
this functional in powers of the fields [13,15]. The true self-
energy is then obtained as 3 (k)=lim,_, o2 (k). To calculate
the scaling functions defined in Eq. (1), it is convenient to
work with rescaled variables which manifestly exhibit the
scaling dimensions of all parameters. With dimensionless
momenta g=k/A we define the dimensionless self-energy as
I'/(q)=Z A2 \(Aq), where [=—In(A/A,). It satisfies an ex-
act flow equation of the form [9]

Il (q) = (2= m-qd)l'(q) + I'i(q). (7)

where 7,==d,In Z;= I'/(q)/ 9g*| .~ is the flowing anomalous
dimension. The function I',(g) depends on higher-order irre-
ducible vertices and describes the usual mode elimination
step of the RG procedure. A graphical representation of the
interaction processes contained in I',(¢) is shown in Fig. 4.
Note that in the ordered phase, where our field has a finite
vacuum expectation value (¢;)=(2m)°8(k)M ,, Eq. (7) has
to be augmented by a flow equation for the flowing order
parameter M ,, which is obtained by requiring that the vertex
with one external leg vanish identically for all A [15]. De-
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FIG. 4. (Color online) Graphical representation of I',(¢) in Eq.
(7) describing the effect of higher-order irreducible vertices, repre-
sented by numbered circles, on the evolution of the self-energy as
degrees of freedom are integrated out. The crossed circle represents
the flowing order parameter, small black dots represent the deriva-
tive with respect to A, circles with G [G] the exact [single scale]
propagator, and S , symmetrizes with respect to external labels. For
T>T,, the last two diagrams involving the three-legged vertex
vanish.

fining ¥(q)=T",(q)-T,(0), the physical self-energy can be
written as an integral over the entire RG trajectory,

S (k -2 *
% = lim e | dle ey n). (8)
0 —®0 1 0

To relate this to the scaling functions o=(x,y) defined in Eq.
(1), we use the definitions k,=Aye', x=k¢, and y=k/k.. By
construction e 2=(Ayé)2=lim,_ e ?r, and x/y=(k.f)
=ele. Our final result is

2 3]

1

o*(ry) =+ J dle T e Hey).(9)
0

The corresponding scaling form of the order parameter cor-
relation function is G(k)=k;2g*(k§,k/ k.), with g=(x,y)
=[y?+0*(x,y)]"". The behavior of g*(x,y) crucially depends
on the ratio y/x. Exactly at the critical point one has x=2, so
that o«(y)=0%(e,y). In the CL regime y<<1 we obtain the
usual anomalous scaling o=(y) & y>~7, while in the CS regime
y>1 we obtain o«(y)*Iny in D=3, which resembles the
perturbative result (u«/itg)*?Acy(k/k.) shown in Fig. 2 where
k. now plays the role of an effective infrared cutoff [8].
Away from criticality, Eq. (9) can only be evaluated nu-
merically. The result of a calculation of o*(x,y) for our
model in D=3, using a similar truncation of the FRG flow
equations as in Ref. [9], is shown in Fig. 5; the crossover
between the different regimes is clearly visible. A FRG cal-
culation of ¢”(x,y), using the flow equations for the irreduc-
ible vertices in the ordered phase derived in Ref. [15], will be
given elsewhere [17]. In the regime y > x, which corresponds
to k, << &, the system is far away from criticality (see Fig. 1)
and the scale k. disappears from the problem. In this case it
is better to normalize the self-energy differently,
E3(k)=2"+ f dle I () (10)
0

Evaluating this expression to lowest order in the interaction
using the trivial scaling r;=~e%r_y and u,~e“ 2y, the
second term on the right-hand side reduces for 7> T, to the
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FIG. 5. (Color online) Scaling function Ac*(x,y)

=0 (x,y) = (k.£&)72Z"" on the line x/y=k,£~1700 in D=3 using a
truncation of the FRG flow equations similar to the one used in Ref.
[9]. Also shown are (u-/ ﬁ0)2A0'0+)(k/ k.), which gives a reasonable
approximation of the CS regime, and the asymptotic critical behav-
ior y>=7 (our truncation leads to 7=~0.101), which is approached
within the CL regime before it is replaced by a y* behavior in the
macroscopic disordered regime.

function Aoj(x) given in Eq. (3) and for T7<T., to the func-
tion Aoj(x) given in Eq. (4).

In summary, we argue that the correlation function G(k)
near continuous phase transitions has a scaling form which
involves (at least) two parameters. While in the critical long
wavelength (CL) regime the self-energy shows asymptoti-
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cally the usual anomalous scaling, (k) <k>~7, there exists
another macroscopic critical short-wavelength (CS) regime
k.<k<<A, where the scaling of the self-energy is given by a
different power law. The scaling function describes the cross-
over between these regimes and the macroscopically ordered
and disordered regime, as well as the finite-k corrections to
the asymptotic k=7 behavior (which is reached only for
k—0) in the CL regime. The nonuniversal scale k. derives
from the nonlinear behavior of the RG flow on the critical
surface and is missed if the flow is linearized around the
critical fixed point. Although for concreteness we have fo-
cused here on the Ising universality class, the two-parameter
scaling applies to the critical behavior of systems which in
the continuum limit are well described by a Ginzburg-
Landau-type action in which terms which are higher order
than quartic in the fields are negligible. The CS regime k.
<k<A, is accessible only if k. is small compared with the
effective uv cutoff A,. For the case of generalized Ising mod-
els, this requires that the range of interactions be very large
[5,6]. A similar crossover might be more readily observed in
near-critical polymer solutions where the crossover scale de-
pends on the radius of gyration of the polymer [5,7], which
can be very large.

We thank E. Vicari and A. Pelissetto for interesting and
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